

Публичное акционерное общество Электромашиностроительный завод "Фирма СЭЛМА"

ВЫПРЯМИТЕЛЬ ДЛЯ ДУГОВОЙ СВАРКИ ВДУ-508

Паспорт

Группа компаний ИТС: ООО «ИТС-Москва» Московская обл. г. Долгопрудный, Лихачевский проезд, 28A www.its-m.ru
Тел/факс: +7(495)988-45-72

ПС_ВДУ508_сер.01_ред.3 от 02.2012 г.

- 1. Основные сведения об изделии и технические данные.
- 1.1. Выпрямитель для дуговой сварки ВДУ-508 с универсальными внешними характеристиками, именуемый в дальнейшем "выпрямитель", предназначен:
- для полуавтоматической сварки плавящимся электродом в среде защитных газов (MIG-MAG);
- для сварки углеродистых, легированных и коррозионностойких сталей на постоянном токе (MMA) металлическими электродами с покрытием;
- для сварки неплавящимся электродом на постоянном токе в среде аргона (TIG) всех металлов, за исключением алюминия и его сплавов.
- 1.2. Выпрямитель изготовлен по техническим условиям ТУ У 31.1-20732066-091:2007 и ДСТУ IEC 60974-1:2003.
 - 1.3. Предприятие изготовитель:

Публичное акционерное общество Электромашиностроительный завод "Фирма СЭЛМА".

Адрес предприятия изготовителя: ул. Генерала Васильева 32а, г. Симферополь, республика Крым, Украина, 95000.

1.4. Основные технические данные выпрямителя приведены в таблице 1.

Таблица 1

Tuoming T			D	
Наименование параметра	Единицы измерения	Режимы MIG-		
		MMA	TIG	MAG
Номинальное напряжение питающей сети трехфазного переменного тока	В	380		
Частота питающей сети	Гц	3~50		
Номинальный сварочный ток, при ПН=60% и длительности цикла 10 мин. *	A	500	500	500
Номинальное рабочее напряжение	В	40	30	39
Напряжение холостого хода, не более**	В	90	90	90
Наименьший сварочный ток, не более	A	50	50	50
Наибольший сварочный ток, не менее	A	500	500	500
Пределы регулирования рабочего напряжения ***	В	22-40	12-30	16,5-39
Коэффициент полезного действия, не менее	%	90	90	90
Потребляемая мощность, при номинальном токе, не более	кВА	25	20	25

Внимание! Максимальный потребляемый ток указан в табличке на изделии.

Работоспособность выпрямителя обеспечивается при колебаниях напряжения питающей сети от минус 10% до плюс 5% от номинального.

- * Перемежающий режим работы при цикле 10 мин без отключения первичной обмотки выпрямителя от сети во время паузы.
 - ** В режиме MMA напряжение холостого хода снижается до значения ≤ 12B.

*** - Значение рабочих напряжений выпрямителя в режиме MMA в вольтах определяется зависимостью:

$$U = 20 + 0.04 * I cB.$$
 (1)

где І св. – сварочный ток, А.

Значение рабочих напряжений выпрямителя в режиме TIG в вольтах определяется зависимостью:

$$U = 10 + 0.04 * I cB.$$
 (2)

Значение рабочих напряжений выпрямителя в режиме MIG-MAG в вольтах определяется зависимостью:

$$U = 14 + 0.05 * I cB.$$
 (3)

1.5. Вид климатического исполнения выпрямителя - УЗ.1 ГОСТ 15150-69.

Выпрямитель предназначен для работы в закрытых помещениях с соблюдением следующих условий:

- температура окружающей среды от минус $10 \, ^{\circ}$ C ($263 \, \mathrm{K}$) до плюс $40 \, ^{\circ}$ C ($313 \, \mathrm{K}$);
- относительная влажность не более 80% при 20 °C (293 K);
- 1.6. Группа условий эксплуатации по механическим воздействиям M1 по ГОСТ 17516.1-90.
 - 1.7. Сведения о содержании драгоценных материалов.

Драгоценные материалы, указанные в ГОСТ 2.608-78, в конструкции изделий и в технологическом процессе изготовления не используются. Сведений о содержании драгоценных материалов в комплектующих изделиях не имеется.

1.8. Общий вид, габаритные размеры и масса выпрямителя приведены в приложении 1.

Схема электрическая принципиальная выпрямителя, перечень элементов к схеме, схема платы управления (A1) и схемы плат защиты (A6, A7) приведены в приложении 2.

2. Комплектность.

Комплект поставки согласовывается при заключении договора на поставку и указывается на ярлыке, закрепляемом на упаковке изделия.

3. Меры безопасности.

- 3.1. При обслуживании и эксплуатации выпрямителя необходимо соблюдать требования нормативных документов по безопасности труда, действующие в регионе выполнения сварочных работ.
- 3.2. Напряжение сети является опасным, поэтому подключение выпрямителя к сети должно осуществляться квалифицированным персоналом, имеющим допуск на выполнение данного вида работ. Перед включением выпрямителя в сеть необходимо надежно заземлить корпус выпрямителя на заземляющий контур. Выпрямитель снабжен устройством заземления, которое расположено внизу задней панели выпрямителя (поз.13, приложение 1,).

ЗАПРЕЩАЕТСЯ:

- использование в качестве заземляющего контура элементы заземления другого оборудования;
- включать выпрямители без заземления.
- 3.3. Подключение выпрямителя должно производиться только к промышленным сетям. Качество подводимой к выпрямителям электрической энергии должно соответствовать нормам по ГОСТ 13109-97.

3.4. Перед началом сварочных работ необходимо проверить состояние изоляции проводов, качество соединений контактов сварочных кабелей и заземляющих проводов.

Не допускаются перемещения выпрямителя, находящегося под напряжением, а также эксплуатация выпрямителя со снятыми элементами кожуха и при наличии механических повреждений изоляции токоведущих частей и органов управления.

- 3.5. При применении выпрямителя для полуавтоматической сварки учитывать требования безопасности, изложенные в паспорте на полуавтомат. Выпрямители не предназначены для работы в среде, насыщенной токопроводящей пылью и (или) содержащей пары и газы, вызывающие усиленную коррозию металлов и разрушающие изоляцию. Возможность работы выпрямителей в условиях, отличных от указанных, должна согласовываться с предприятием-изготовителем.
- 3.6. Место производства сварочных работ должно быть оборудовано необходимыми средствами пожаротушения согласно требований противопожарной безопасности.
- 3.7. Ультрафиолетовое излучение, брызги расплавленного металла, сопутствующие процессе сварки, являются опасными для глаз и открытых участков тела. Для защиты от излучения дуги нужно применять щиток или маску с защитными светофильтрами, соответствующих данному способу сварки и величине сварочного тока. Для предохранения от ожогов руки сварщика должны быть защищены рукавицами, а тело специальной одеждой.
- 3.8. При работе в закрытых помещениях для улавливания образующихся в процессе сварки аэрозолей и дымовыделений на рабочих местах необходимо предусматривать местные отсосы и вентиляцию.
- 3.9. Зачистку сварных швов от шлака следует производить только после полного остывания шва и обязательно в очках с простыми стеклами.
 - 3.10. Не допускается эксплуатация выпрямителя с "дизельэлектростанциями".

4. Взаимозаменяемость с ранее выпущенными модификациями излелия.

При приобретении полуавтомата отдельно от выпрямителя проверьте соответствие номинала резистора регулировки напряжения на выпрямителе с номиналом резистора регулировки напряжения на подключаемом полуавтомате - они должны быть одинаковы. Проверьте величину напряжения и род тока, необходимые для питания подключаемого полуавтомата, а так же наличие гальванически развязанного контакта для кнопки на горелке.

<u>Внимание!</u> Предприятие-изготовитель оставляет за собой право вносить изменения в схему электрическую изделия, которые не ухудшают технические характеристики. Претензии, о несоответствии примененной комплектации со схемами и перечнями паспорта, предприятием-изготовителем не принимаются.

5. Принцип работы.

- 5.1. Выпрямитель обеспечивает:
- жесткие внешние характеристики со ступенчатой регулировкой индуктивности сварочной цепи, предназначенные для полуавтоматической сварки в среде защитного газа (MIG-MAG);
- крутопадающие внешние характеристики, предназначенные для ручной дуговой сварки металлическими электродами с покрытием (MMA);
- крутопадающие внешние характеристики, предназначенную для сварки неплавящимся электродом в среде аргона (TIG);
- Охлаждение выпрямителя осуществляется с помощью встроенного вентилятора.

- 5.2. Включение выпрямителя производится кнопкой "Пуск" (поз.8, приложение 1). При этом засветятся индикаторы сварочного тока и напряжения (поз.4 и 5, приложение 1) и включается вентилятор.
- 5.3. Выбор режима сварки осуществляется с помощью переключателя выбора режимов (поз.9, приложение 1).
- 5.4. Выпрямитель снабжен термореле, отключающим силовые цепи при перегрузке выпрямителя. При срабатывании тепловой защиты загорается индикатор "Перегрев" на передней панели выпрямителя (поз.3, приложение 1).

Внимание! Срабатывание тепловой защиты, при исправном изделии, свидетельствует о нарушении режима эксплуатации выпрямителя.

- 5.5. Срабатывание защиты автоматического выключателя (поз.16, приложение 1) указывает на аварийный режим работы выпрямителя. Дальнейшая работа выпрямителя возможна только после устранения причины и перевода автоматического выключателя в состояние "включено". Для доступа к рычажку управления выключателем необходимо снять защитную крышку.
- 5.6. Регулировка сварочного напряжения в режиме MIG-MAG осуществляется непосредственно на выпрямителе с помощью потенциометра регулировки сварочного напряжения (тока) (поз.6, приложение 1) или с механизма подачи полуавтомата. Выбор органа регулировки (местный или дистанционный) осуществляется с помощью тумблера (поз.7, приложение 1). В режимах ММА и ТІG регулировка сварочного тока осуществляется с помощью потенциометра на передней панели выпрямителя (поз.6, приложение 1).
- 5.7. Значение сварочного тока и напряжения контролируется цифровыми индикаторами, расположенными на лицевой панели выпрямителя (поз.4,5, приложение 1).

6. Подготовка к работе.

- 6.1. При приобретении выпрямителя и подготовке его к эксплуатации необходимо:
- 1) убедиться в целостности выпрямителя;
- 2) внимательно ознакомиться с настоящим паспортом;
- 3) проверить комплектность выпрямителя.
- 6.2. Перед первым пуском нового выпрямителя или перед пуском выпрямителя, длительное время не бывшего в эксплуатации:
- очистить выпрямитель от пыли, продувая его сжатым воздухом;
- проверить состояние электрических проводов и разъемов;
- заземлить выпрямитель через устройство заземления (поз.13, приложение 1);
- подключите сетевой кабель к выпрямителю. Для этого снимите крышку отсека (поз. 14, приложение 1), отвернув 2 винта; открутите внешнюю, фиксирующую кабель гайку устройства ввода (поз.15 приложение1), пропустите сетевой кабель через устройство ввода сетевого кабеля и подключите его к клеммной колодке. Зафиксируйте сетевой кабель фиксирующей гайкой устройства. Установить крышку отсека на место;
- подключить сетевой кабель к распределительному щиту. Напряжение питания выпрямителя 3x380 B, 50 Γ ц.
- 6.3. Обесточьте место подключения на распределительном щитке. Проверьте соответствие напряжения сети напряжению, указанному на табличке выпрямителя. Подключите сетевые кабели к месту подключения.

Внимание! Подключение изделия к питающей сети должно производиться только через автоматический выключатель, рассчитанный на максимальный потребляемый ток. Выключатель обязательно должен иметь тепловую защиту - тепловой расцепитель с уставкой, рассчитанной на фазный ток, близкий к току потребления, рассчитанный по формуле:

$$I_{pacy.} = I \times \sqrt{\frac{\Pi H}{100}}$$

где: Ірасц. - ток уставки теплового расцепителя, А

I – максимальный потребляемый ток, А

ПН- номинальный режим работы, %

Место подключения должно быть оснащено устройством контроля фаз.

Внимание! Во избежание отключения автомата защиты сети пусковыми токами рекомендуется применять автоматы защиты на (50...63) А с током отсечки 10хIн.

6.4. Подайте напряжение на выпрямитель при этом засветится индикатор (поз.8, приложение 1).

Нажмите кнопу "Пуск" (поз.8, приложение 1) при этом засветится индикаторы сварочного напряжения и тока (поз.4 и 5, приложение 1)

Выпрямитель будет находиться в режиме предустановки сварочного режима в зависимости от выбранного вида сварки:

- MMA , TIG на индикаторе сварочного тока (поз.4, приложение 1) индицируется величина предустанавливаемого сварочного тока, на индикаторе сварочного напряжения (поз.5, приложение 1) индицируется "---"
- MIG-MAG на индикаторе сварочного напряжения (поз.5, приложение 1) индицируется величина предустанавливаемого сварочного напряжения, на индикаторе сварочного тока (поз.4, приложение 1) индицируется "---"

После проверки выключите выпрямитель, нажав кнопку "Стоп" (поз.8, приложение 1) лючатель, и обесточьте место подключения.

- 6.5. Для сварочных работ в режиме MIG-MAG необходимо подключить сварочное оборудование в порядке и последовательности, указанной в паспорте на полуавтомат.
- 6.6. Для сварочных работ в режиме ММА необходимо доукомплектовать выпрямитель сварочными кабелями с электрододержателем и кабелем с клеммой "Земля".
- 6.7. **Внимание!** При работе в режиме TIG на токах менее 50 A возможно возникновение звукового эффекта на сварочной дуге, что не является дефектом сварочного выпрямителя.
 - 7. Порядок работы.
 - 7.1. Проведение сварочных работ в режиме MIG-MAG.
 - 7.1.1. При проведении сварочных работ в режиме MIG-MAG:
- подключите подающий механизм к выпрямителю с помощью кабеля управления;
- подключите к подающему механизму сварочный кабель от силового разъема "+" (поз.12, приложение 1) выпрямителя;
- подключите силовой разъем "-" (поз.11, приложение 1) выпрямителя на свариваемую деталь;

7.1.2. На выпрямителе:

- нажмите кнопку "Пуск" (поз.8, приложение 1). При этом засветятся индикаторы сварочного напряжения и тока;
- переключатель выбора режимов сварки установите в положение MIG-MAG [символьное изображение горелки] (поз.9, приложение 1);
- тумблер "Местное/дистанционное" установите в нижнее положение (дистанционное управление). При этом включение, регулирование и выключение сварочного напряжения производится органами управления подающего механизма.
 - 7.1.3. На подающем механизме:
- подготовьте подающий механизм к выполнению сварочных работ согласно его инструкции по эксплуатации;
- 7.1.4. Проведите пробную сварку, в процессе которой необходимо произвести дополнительную регулировку скорости подачи и напряжения для достижения оптимального сварочного процесса. Отрегулируйте, при необходимости, расход защитного газа.
- 7.1.5. В процессе выполнения пробной сварки рекомендуется ручкой ступенчатой регулировки индуктивности сварочной цепи (поз.10, приложение 1) провести настройку оптимального сварочного режима.
- 7.1.6. При перерывах в работе отключить выпрямитель нажатием кнопки "Стоп" (поз.8, приложение 1) на лицевой панели выпрямителя.
 - 7.2. Проведение сварочных работ в режиме ММА.
- 7.2.1. Для проведения сварочных работ в режиме MMA с использованием электродов, предназначенных для сварки на обратной полярности:
- подключите силовой кабель электрододержателя к силовому разъему "+" (поз.12, приложение 1) выпрямителя;
- заземлите силовой разъем "-" (поз.11, приложение 1) выпрямителя на свариваемую деталь;
- установите переключатель выбора режимов сварки (поз.9, приложение 1) в положение "MMA" (символьное изображение электрододержателя), при этом на выходе выпрямителя появится напряжение холостого хода.
- 7.2.2. Контроль величины сварочного тока и напряжения на дуге в процессе сварки осуществляется по цифровым индикаторам, расположенным на передней панели выпрямителя.
- 7.2.3. Ориентировочные значения диаметра электрода и сварочного тока в зависимости от толщины свариваемого металла, при сварке конструкционных сталей в стык в нижнем положении электродами типа АНО, МР3 и др., приведены в таблице 2.

Таблица 2

Пиомотр энострона мм	Оптимальная толщина	Ориентировочный	
Диаметр электрода, мм	свариваемого металла, мм	сварочный ток, А	
2,0	1,0-2,0	50-70	
3,0	1,5-4,0	80-120	
4,0	3,0-6,0	130-170	
5,0	5,0-20,0	190-250	
6,0	15,0-40,0	260-330	

Внимание! Электроды должны быть сухими, без нарушения покрытия, соответствовать роду тока и марке свариваемых материалов.

7.3. Для проведения сварочных работ в режиме TIG необходимо применять специальные блоки управления, обеспечивающие необходимую циклограмму сварки режима TIG.

7.4. Предустановка и индикация сварочного напряжения и тока.

В режиме предустановка:

- MMA, TIG -на индикаторе сварочного тока (поз.4, приложение 1) индицируется величина предустанавливаемого сварочного тока, на индикаторе сварочного напряжения (поз.5, приложение 1) индицируется "---".
- MIG-MAG -на индикаторе сварочного напряжения (поз.5, приложение 1) индицируется величина предустанавливаемого сварочного напряжения, на индикаторе сварочного тока (поз.4, приложение 1) индицируется "---".

В режиме сварка индицируются текущие значения сварочного тока и напряжения.

После окончания сварки индикатор сварочного напряжения и тока индицирует запомненные значения сварочного тока и напряжения. Поэтому, для корректной работы индикатора в этом режиме, продолжительность сварочного процесса должна быть не менее 3 сек.

Для перехода в режим предустановка нажмите кнопку "Предустановка" (поз.2, приложение 1).

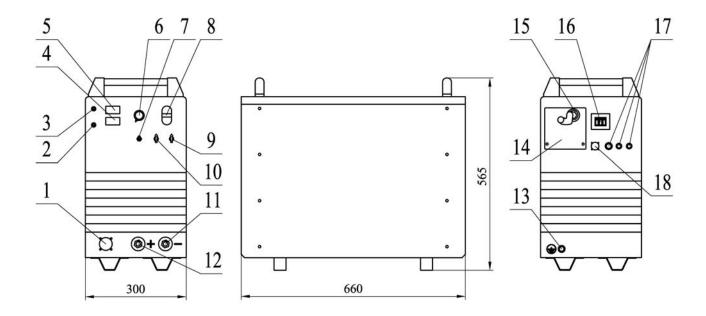
Выпрямитель будет находиться в режиме предустановки сварочного режима в зависимости от выбранного вида сварки.

8. Техническое обслуживание.

Все работы по техническому обслуживанию должны проводиться на выпрямителе, отключенном от питающей сети.

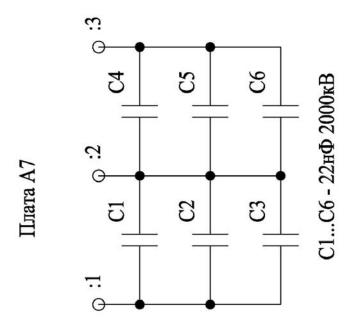
- 8.1. При ежедневном обслуживании необходимо перед началом работы произвести внешний осмотр выпрямителя и устранить замеченные неисправности:
- проверить заземление выпрямителя;
- проверить надежность контактных соединений.
 - 8.2. При периодическом обслуживании не реже одного раза в месяц необходимо:
- очистить выпрямитель, от пыли и грязи, для чего снять кожух, продуть сжатым воздухом и в доступных местах протереть чистой мягкой тканью;
- проверить состояние электрических контактов и паек;
- подтянуть болтовые и винтовые соединения;
- проверить четкость фиксации коммутационных положений переключателя;
- 8.3. Периодичность технического обслуживания определяется также требованиями паспорта на сварочный полуавтомат, в составе которого эксплуатируется выпрямитель.

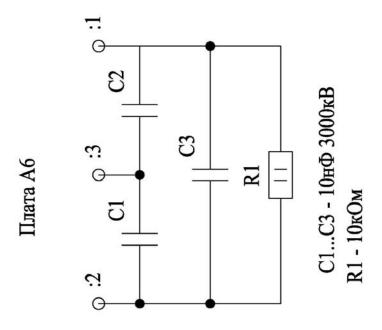
9. Правила хранения.


Хранение упакованных выпрямителей должно производиться в закрытых вентилируемых складских помещениях по группе 1 (Л) ГОСТ 15150.

- 10. Гарантии изготовителя.
- 10.1. Гарантийный срок эксплуатации изделия 12 месяцев с момента ввода в эксплуатацию, но не более 18 месяцев со дня отгрузки с предприятия-изготовителя.
- 10.2. Гарантия не включает в себя проведение пуско-наладочных работ, отработку технических приемов сварки, проведение периодического обслуживания.
- 10.3. Гарантийные обязательства не распространяются на входящие в комплект поставки расходные комплектующие.
- 10.4. Не подлежат гарантийному ремонту изделия с дефектами, возникшими вследствие:
- механических повреждений;
- несоблюдения условий эксплуатации или ошибочных действий потребителя;
- стихийных бедствий (молния, пожар, наводнение и т.п.), а также других причин, находящихся вне контроля продавца и изготовителя;
- попадания внутрь изделия посторонних предметов и жидкостей;
- ремонта или внесения конструктивных изменений без согласования с изготовителем;
- использования изделия в режимах, не предусмотренных настоящим паспортом;
- отклонений питающих сетей от Государственных Технических Стандартов.
- 10.5. Настоящая гарантия не ущемляет законных прав потребителя, предоставленных ему действующим законодательством.
- 10.6. Гарантийные обязательства вступают в силу при соблюдении следующих условий:
- обязательное предъявление потребителем изделия, все реквизиты которого соответствуют разделу "Свидетельство о приемке" паспорта;
- настоящего паспорта с отметками о приемке и датой выпуска;
- предоставление сведений о продолжительности эксплуатации, о внешних признаках отказа, о режиме работы перед отказом (сварочный ток, рабочее напряжение, ПН%, длина и сечение сварочных проводов, характеристики подключаемого оборудования), об условиях эксплуатации.

11 Съи	етельство	$^{\circ}$	придлика
тт. Свид	СТСЛЬСТВО	U	присмкс


Выпрямитель	ВДУ-508 Наименование изделия	01-00- Идентификационный код изделия	
	1	гствии с обязательными ствующей технической док	•
М.П	<u> </u>	расшифровка подписи	
число, месяц, го	од		


Приложение 1 Общий вид, габаритные размеры и масса выпрямителя ВДУ-508

Масса, кг, не более - 58

- 1. Разъём для подключения полуавтомата;
- 2. Кнопка "Предустановка";
- 3. Индикатор "Перегрев";
- 4. Индикатор сварочного тока;
- 5. Индикатор сварочного напряжения;
- 6. Потенциометр регулирования выходного напряжения (тока);
- 7. Тумблер "Местное-дистанционное управление";
- 8. Блок кнопок сетевого выключателя с индикатором "Сеть";
- 9. Переключатель режимов работы "MMA/ MIG-MAG/ TIG";
- 10. Переключатель выбора ступеней индуктивности сварочной цепи;
- 11. Силовой разъем "-";
- 12. Силовой разъем "+";
- 13. Устройство заземления;
- 14. Съемная крышка отсека подключения сетевого кабеля;
- 15. Устройство ввода сетевого кабеля;
- 16. Автоматический выключатель "Сеть" (защитная крышка не показана);
- 17. Предохранители;
- 18. Разъем "~380В".

